System on a Chip

Prof. Dr. Michael Kraft

Lecture 2: Revision: MOSFET Operation and Modelling

- Basic MOSFET Operation
- Small Signal Model
- Spice Models
- Short Channel Effects

- MOSFET is a symmetrical device.
- Metal on the gate is often replaced by polysilicon.
- L is the parameter characterising a process technology. Modern processes have a gate length down to 0.065µm for digital circuits. Analogue circuits ~0.35-1µm.
- Gate oxide thickness is in the order of a few nm.
- The ITRS predicts gate lengths of 13nm by 2013 and 6nm by 2020!!!
- For v_{GS} = 0, the source and drain regions are separated by back-to-back pn junctions resulting in an extremely high resistance (about 10¹² Ω)

MOSFET As A Switch

For digital operation, the MOSFET is modelled as an ON/OFF switch

- g=1 (High) represents the positive supply voltage (V_{DD}) applied to the gate
- Typical values from 5V (older technologies) to 1.0V (newer technologies)

MOSFET Symbols

n-channel transistor symbols

P-channel transistor symbols

- All are enhancement transistors (normally off)
 - Depletion mode transistors are not used anymore (normally on)

Basic Operation

V_G<0: accumulated channel

V_G>0: inverted channel, Current flow gate drain possible

- Gate source voltage for which the concentration of electrons is equal to concentration of holes in the substrate is called the Threshold voltage, V_{th}
- Charge density in channel is proportional to V_{eff}=V_{GS}-V_{th}

Basic Operation Triode Region

V_G>0: inverted channel, Current flow gate drain possible

- Charge density (charge per unit area): $Q_n = C_{ox}(V_{GS}-V_{th}) = C_{ox}V_{eff}$
- C_{ox} is the **Gate Capacitance per unit area**: $C_{ox} = \frac{\varepsilon_{ox}\varepsilon_0}{t_{ox}}$
 - ε_{ox} is the relative permittivity of SiO₂
 - t_{ox} the SiO₂ thickness
- Total charge in channel: $Q_T = WLC_{ox}(V_{GS} V_{th})$
- For $V_{DS} > 0$ but small $(V_{DS} < V_{eff})$: $I_D = \mu_n Q_n \frac{W}{L} V_{DS} = \mu_n C_{ox} (V_{GS} V_{th}) \frac{W}{L} V_{DS}$
 - μ_n: mobility of electrons near surface (0.14m2/Vs in intrinsic Si, 0.01-0.06m²/Vs in modern NMOS devices
 - Behaves like a resistor

Saturation Region

۷D

V_{Dsat}

0

- For V_{DS} increasing, the channel charge at the drain end decreases
 - Voltage across the gate oxide is smaller at the drain end
 - Charge density has a tapered shaped
 - Charge density at x: $Q_n(x) = C_{ox}(V_{GS} V_{ch}(x) V_{th})$
 - At drain end: $V_{G}-V_{ch}(L)=V_{GD}$
- For V_{DS} further increasing, the gate to channel voltage will become smaller than the V_{th} at the drain end → channel is pinched off
 - I_D saturates
 - Pinch off occurs at $V_{DS,sat} = V_{GS} V_{th} = V_{eff}$

DEPLETION REGION

- Active or saturation region: mainly used for analogue circuits (amplifiers)
 - Bias transistor so that V_{GS} - V_{th} >100mV
 - Square law relationship (for BJT: exponential relationship)
 - Drain current is impendent of V_{DS}
 - This is only true as a first order approximation

Channel Length Modulation

- For V_{DS} even further increasing, the point where the gate to channel voltage is equal to V_{th} moves to towards the source
 - The effective channel is shortened: channel length modulation
 - It can be shown that:

$$I_{D} = \frac{\mu_{n}C_{ox}}{2} \left(\frac{W}{L}\right) (V_{GS} - V_{tn})^{2} [1 + \lambda(V_{DS} - V_{eff})]$$

 $-\lambda$: channel length modulation parameter or output impedance constant (unit: V⁻¹)

Channel Length Modulation

- Channel length modulation introduces a dependence of I_D on V_{DS} in the active region $(\partial I_D)^{-1} = 1$
 - Output resistance: $r_0 = \left(\frac{\partial I_D}{\partial V_{DS}}\right)^{-1} = \frac{1}{\lambda I_D}$
 - for even high values of V_{DS} other second order effects (short channel effects) dominate and cause a stronger dependence of I_D on V_{DS}

Threshold Voltage

$$V_{tno} = \Phi_{GS} - Q_{ss}/C_{OX} + 2\Phi_F + \gamma \text{ sqrt}(2\Phi_F)$$

 Φ_{GS} : work function difference, gate/substrate materials Φ_{F} : Fermi potential of substrate, $\approx 0.35V$ K_S: relative permittivity of Si, 11.9

 $V_{tn} = V_{tn0} + \Delta V_{tn}$

$$= V_{tn0} + \frac{\sqrt{2qN_AK_s\epsilon_0}}{C_{ox}} \left[\sqrt{V_{SB} + |2\phi_F|} - \sqrt{|2\phi_F|} \right]$$
$$= V_{tn0} + \gamma \left(\sqrt{V_{SB} + |2\phi_F|} - \sqrt{|2\phi_F|} \right)$$

- The threshold voltage depends on:
 - The work-function difference between the gate material and the substrate material
 - The voltage drop between the channel and the substrate required for the channel to exist
 - The voltage drop across the thin oxide required for the depletion region, with its immobile charge, to exist
 - The voltage drop across the thin oxide due to unavoidable charge trapped in the thin oxide
 - The voltage drop across the thin oxide due to implanted charge at the surface of the silicon.

Body Effect

- The source body voltage, V_{SB} influences the threshold voltage hence the drain current (sometimes the substrate is referred to as a second gate)
- For V_{SB} increasing, the depletion region between the channel and the substrate becomes wider, hence there is more charge
- Modelled by the Body effect constant:

$$\gamma = \frac{\sqrt{2qN_AK_s\varepsilon_0}}{C_{ox}}$$

Small Signal Model, Low Frequency

• Transconductance,
$$g_m$$

 $g_m = \frac{\partial I_D}{\partial V_{GS}} = k' \frac{W}{L} (V_{GS} - V_{th}) (1 + \lambda V_{DS})$
for $\lambda V_{DS} << 1$
 $g_m = k' \frac{W}{L} (V_{GS} - V_{th}) = \sqrt{2k' \frac{W}{L} I_D}$
with $k' = \mu_n C_{ox}$
• Output resistance, r_o (or r_{ds}):

$$r_0 = \left(\frac{\partial I_D}{\partial V_{DS}}\right)^{-1} = \frac{1}{\lambda I_D}$$

Body Transconductance, g_{mb}

$$g_{mb} = \frac{\partial I_D}{\partial V_{SB}} = -k' \frac{W}{L} (V_{GS} - V_{th}) (1 + \lambda V_{DS}) \frac{\partial V_T}{\partial V_{SB}}$$
$$\frac{\partial V_T}{\partial V_{SB}} = -\frac{\gamma}{2\sqrt{2\phi_F + V_{SB}}} = -\chi$$
$$\chi = \frac{g_{mb}}{g_m} \quad typical \ \chi = 0.1...0.3$$
for $\lambda V_{DS} <<1$
$$g_{mb} = \frac{\gamma \sqrt{k' (W/L)} I_D}{2\sqrt{2\phi_F + V_{SB}}}$$

- For higher frequencies, capacitances need to be considered
 - The largest capacitances are $C_{gs}=2/3WLC_{ox}$ and the depletion capacitance at the source: $C'_{sb} = (A_s + A_{ch})C_{js}$ with: $C_{js} = \frac{C_{j0}}{\sqrt{1 + V_{sB}}}$

MOSFET Capacitors

- Intrinsic and extrinsic capacitances:
 - Intrinsic cap's are related to the electric field in the gate oxide which also forms the channel.
 - Extrinsic cap's are caused by parasitic effects.
- Intrinsic capacitances are associated with charge on the gate electrode and in the channel hence vary with the terminal voltages.
- Two intrinsic capacitances: gate capacitance and source-body and drain-body depletion capacitance (two reverse biased p-n junctions)

Small Signal Model, High Frequency

- C_{gd} is due to the overlap between the gate and the drain and fringing capacitance, C_{gd}=C_{ox}WL_{ox}
 - sometimes called the Miller capacitance, which is important when there is a voltage gain between gate and drain
- Figure of merit for transistor speed: *unity-gain frequency*

$$f_{t}\approx \frac{g_{\text{m}}}{2\pi(C_{\text{gs}}+C_{\text{gd}})}$$

MOSFET Capacitors

Subthreshold (Weak Inversion)

- Simple model assumes that MOST turns on suddenly for V_{GS} > V_{th} and is completely off for V_{GS} < V_{th}
- For 0<V_{GS}<V_{th} negative, there exists already a channel
 - weak inversion
 - main conduction mechanism is diffusion (not drift as in strong inversion)
 - Drain current vs gate-source voltage is exponential (like in a BJT)

$$I_{\text{D(sub-th)}} \,\cong\, I_{\text{D0}}\!\!\left(\!\frac{W}{L}\!\right) e^{(qV_{\text{eff}}\!/nkT)}$$

• with
$$n = \frac{C_{ox} + C_{j0}}{C_{ox}} \approx 1.5$$
 and $I_{D0} = (n-1)\mu_n C_{ox} \left(\frac{kT}{q}\right)^2$

- The effective carrier mobility decreases under large electric fields
 - due to the vertical electric fields, electrons are pushed to the surface and scattered
- The effect causes the velocity of carriers to saturate (≈10⁷ cm/s in Si)
- Effective carrier mobility: $\mu_{n, eff} \cong \frac{\mu_n}{\left(\left[1 + \left(\theta V_{eff}\right)^m\right]\right)^{1/m}}$
 - θ and m are device technology parameters
- Incorporating this into the drain current equation: $I_{D} = \frac{1}{2} \mu_{n} C_{ox} \frac{W}{L} V_{eff}^{2} \left(\frac{1}{\left[1 + (\theta V_{off})^{m}\right]^{1/m}} \right)$
- The maximum transconductance achievable with: $g_{m(mob-deg)} = \frac{1}{2} \mu_n C_{ox} \frac{W_1}{L_p}$
- Mobility degradation becomes a major effect for smaller technologies

Summary Subthreshold, Mobility Degradation

	Subthreshold (exponential)	Strong Inversion (square-law)	Mobility Degradation (linear)
Region of validity	$V_{\text{eff}}\lesssim0$	$\frac{2nkT}{q} < V_{\text{eff}} < \frac{1}{2\theta}$	$V_{eff} > \frac{1}{2\theta}$
Drain current, I _D	$I_{\text{D0}}\!\!\left(\frac{W}{L}\right)\!e^{(qV_{\text{eff}}/nkT)}$	$\frac{1}{2}\mu_{n}C_{ox}\frac{W}{L}V_{eff}^{2}$	$\frac{0.5 \mu_{\text{n}} \text{C}_{\text{ox}}(\text{W/L}) \text{V}_{\text{eff}}^2}{\left[1 + (\theta \text{V}_{\text{eff}})^{\text{m}}\right]^{1/\text{m}}}$
Small-signal transconductance, <u>gm</u>	<u>ql</u> ₀ nkT	$\frac{2I_{D}}{V_{eff}} = \mu_{n}C_{ox}\frac{W}{L}V_{eff}$	$\frac{1}{2}\mu_{n}C_{ox}\frac{W}{L}\frac{1}{\theta}$
Most useful	Very low-power operation	Most analog design	Very high-speed operation

Short Channel Effects

- Short Channel effects include a number of effects that become important for shrinking dimensions
 - Reduced output impedance
 - hot-carrier effects
 - oxide trapping
 - substrate currents
 - Threshold voltage dependency on device dimensions W/L
- Short channel transistors have reduced output impedance because the depletion region at drain end have an increased proportional effect on drain current
 - Additionally a phenomenon known as drain-induced barrier lowering (DIBL) effectively lowers V_{th} as V_{DS} is increased, thereby further lowering the output impedance of a short-channel device

- high-velocity carriers can cause harmful effects
 - generation of electron-hole pairs by impact ionization and avalanching
 - Extra electron-hole pairs are caused by impact ionization and cause currents to flow from the drain region to the substrate
 - effect can be modelled by a finite drain-to-ground impedance
 - can also cause latch-up
 - hot-carriers can also cause a tunnel current through the gate oxide
 - some get trapped and shift the threshold voltage
 - hot carriers limit the long term life time and reliability of MOST
 - hot carrier can also cause punch through from source to drain and can cause transistor breakdown

- The SPICE level 1 model (Schichman-Hodges Model*) is a simple, approximate model which is essentially the same as used for handcalculations
- The model consists of the following components:
 - An equation for the threshold voltage
 - Equations for the drain/source current
 - Equations for the gate capacitances CGS and CGD
 - An equivalent circuit
 - Model parameters depend on the SPICE version

* [1] H. Shichman and D. A. Hodges, "Modeling and simulation of insulated-gate field-effect transistor switching circuits," IEEE Journal of Solid-State Circuits, SC-3, 285, September 1968.

SPICE Level 1 Parameters

SYMBOL	PARAMETER	DESCRIPTION
V _{TO}	VTO	Zero bias threshold voltage
K _p	KP	Transconductance parameter
λ	LAMDA	Channel length modulation
γ	GAMMA	Body effect parameter
2Φ _F	PHI	Surface inversion potential
t _{ox}	TOX	Gate oxide thickness
N _A	NSUB	Substrate doping concentration
L _D	LD	Lateral diffusion
μ	UO	Surface mobility
I _S	IS	S/B & D/B diode saturation current
V _{BI}	PB	S/B & D/B diode built in voltage
C _{J0}	CJ	S/B & D/B zero bias junction cap./m ²

SPICE Level 1 Parameters

MJ	MJ	S/B & D/B doping profile grading coefficient
C _{JSW}	CJSW	S/B & D/B zero bias perimeter doping grading coefficient
M _{JSW}	MSJW	S/B & D/B perimeter doping grading coefficient
C _{GBO}	CGBO	G/B overlap capacitance/m ²
C _{GDO}	CGDO	G/D overlap capacitance/m ²
C _{GSO}	CGSO	G/S overlap capacitance/m ²
R _D	RD	Drain series resistance
R _S	RS	Source series resistance

SPICE Level 1 Equations (1/2)

From PSPICE manuals (PSPRef.pdf, pp. 198):

Drain current equations

Normal mode: Vds > 0

Case 1

```
for cutoff region: Vgs-V to < 0
then: Idrain = 0
```

Case 2

```
for linear region: Vds < Vgs-V to
then: Idrain = (W/L) \cdot (KP/2) \cdot (1+LAMBDA \cdot Vds) \cdot Vds \cdot (2 \cdot (Vgs-V to) - Vds)
```

Case 3

```
for saturation region: 0 < Vgs-V to < Vds
then: Idrain = (W/L)·(KP/2)·(1+LAMBDA·Vds)·(Vgs-V to ) 2
where
```

```
V to = VTO+GAMMA \cdot ((PHI-Vbs)1/2 -PHI 1/2)
```

Inverted mode: Vds < 0

Switch the source and drain in the normal mode equations above.

SPICE Level 1 Equations (2/2)

From PSPICE manuals (PSPRef.pdf, pp. 199): **MOSFET** equations for capacitance

if

if

```
Cbs = bulk-source capacitance = area cap. + sidewall cap. + transit
time cap.
Cbd = bulk-drain capacitance = area cap. + sidewall cap. + transit
time cap.
      where
      if
            CBS = 0 AND CBD = 0
      then
            Cbs = AS·CJ·Cbsi + PS·CJSW·Cbss + TT·Gbs
            Cbd = AD·CJ·Cbdj + PD·CJSW·Cbds + TT·Gds
      else
            Cbs = CBS·Cbsj + PS·CJSW·Cbss + TT·Gbs
            Cbd = CBD·Cbdj + PD·CJSW·Cbds + TT·Gds
            where
            Gbs = DC bulk-source conductance = dbs/dVbs
            Gbd = DC bulk-drain conductance = dlbd/dVbd
      Vbs < FC·PB
then
      Cbsj = (1-Vbs/PB)-MJ
      Cbss = (1-Vbs/PBSW)-MJSW
      Vbs > FC·PB
```

SPICE Level 1 Equations (3/3)

MOSFET equations for capacitance (cont.)

```
then

Cbsj = (1-FC)-(1+MJ)\cdot(1-FC\cdot(1+MJ)+MJ\cdotVbs/PB)
Cbss = (1-FC)-(1+MJSW)\cdot(1-FC\cdot(1+MJSW)+MJSW\cdotVbs/PBSW)
if

Vbd < FC\cdotPB
then

Cbdj = (1-Vbd/PB)-MJ
Cbds = (1-Vbd/PBSW)-MJSW
if

Vbd > FC\cdotPB
```

then

```
Cbdj = (1-FC)-(1+MJ)\cdot(1-FC\cdot(1+MJ)+MJ\cdot Vbd/PB)Cbds = (1-FC)-(1+MJSW)\cdot(1-FC\cdot(1+MJSW))
```

```
Cgs = gate-source overlap capacitance = CGSO·W
```

```
Cgd = gate-drain overlap capacitance = CGDO·W
```

```
Cgb = gate-bulk overlap capacitance = CGBO·L
```

Advanced Spice Models

- BSIM3
 - Improved modelling of moderate inversion, and the geometrydependence of device parameters. physics-based model
- EKV:
 - Relates terminal currents and voltages with unified equations that cover all modes of transistor operation, hence avoiding discontinuities at transitions between, for example, weak and strong inversion. Also handles geometry-dependent device parameters.
- BSIM4
 - Improved modeling of leakage currents and short-channel effects, noise, and parasitic resistance in the MOSFET terminals, as well as continued improvements in capturing the geometry dependence of device parameters.
- PSP:
 - Improved modeling of noise and the many short-channel and layoutdependent effects now dominant in nanoscale CMOS devices. Good for nonlinearities.

sdfsd

- werwer
- werwer

MOSFET Equations

n-Kanal-Enhancement-Transistor

MOSFET Equations

• Example: n-channel enhancement transistor

Output characteristics

Triode Region

$$l_D = k' \frac{W}{L} \left(V_{GS} - V_T - \frac{V_{DS}}{2} \right) \cdot V_{DS}$$

Saturation Region

$$l_D = \frac{k'}{2} \cdot \frac{W}{L} \left(V_{GS} - V_T \right)^2 \cdot \left(1 + \frac{V_{DS}}{V_A} \right)$$

Comparison BJT - MOSFET

	Field Effect Transistor (FET)	Bipolar Junction Transistor (BJT)	
1	Low voltage gain	High voltage gain	
2	High current gain	Low current gain	
3	Very input impedance	Low input impedance	
4	High output impedance	Low output impedance	
5	Low noise generation	Medium noise generation	
6	Fast switching time	Medium switching time	
7	Easily damaged by static	Robust	
8	Some require an input to turn it "OFF"	Requires zero input to turn it "OFF"	
9	Voltage controlled device	Current controlled device	
10	Exhibits the properties of a Resistor		
11	More expensive than bipolar	Cheap	
12	Difficult to bias	Easy to bias	

Comparison BJT - MOSFET

Bipolar Transistor	MOSFET	
Exponential Characteristic	Quadratic Characteristic	
Active: V _{CB} > 0	Saturation: $V_{DS} > V_{GS} - V_{TH}$	
Saturation: $V_{CB} < 0$	Triode: V _{DS} < V _{GS} - V _{TH}	
Finite Base Current	Zero Gate Current	
Early Effect	Channel-Length Modulation	
Diffusion Current	Drift Current	
-	Voltage-Dependent Resistor	

- MOSFET: controlled by an electric field
 - Very high input resistance (no current into gate)
- Bipolar devices have a higher g_m than MOSFETs for a given bias current due to its exponential IV characteristics.